A review on new cobalt-free cathode materials for reversible solid oxide fuel cells
نویسندگان
چکیده
The exponential growth in the requirement of fuel cells and batteries leads to increased demand for cobalt due its common use high-performance Li-ion high-temperature cells/electrolyzers. This sharp increment raises concern about availability limited reserves which can impact price cobalt. Moreover, geographic limitations resources may endanger whole supply chain. In addition all those, huge moral issues mining are also another problem. Hence, leading battery, electrolyzer manufacturers looking sustainable alternatives reduce dependency. A more specific limitation is shown Solid Oxide Fuel Cells (SOFCs) cathode materials that contain Incompatibilities have already been observed between containing electrolytes terms thermal expansion coefficient mismatch during transition operating temperature from high low. An advantage low temperatures reduction material costs compared temperature. Increasing electrochemical performance cell eliminating difference problems concert aimed at development cobalt-free materials. Therefore, vital sustainability SOFCs green energy sector since they be used as anode symmetrical known reversible SOFC (RSOFC). this review, we comprehensively summarize recent advances perovskite intermediate RSOFCs.
منابع مشابه
La0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for Intermediate Temperature Solid Oxide Fuel Cells: A comparative study
In this study the characteristics of two different kinds of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powders, one in-house synthesized powder by a co-precipitation method and another one purchased from Fuel Cell Materials Co. (FCM Co., USA), were compared. The co-precipitated powder was prepared by using ammonium carbonate as precipitant with a NH4+/NO3- molar ratio of 2 and calcination at 1000C for 1 h....
متن کاملMaterials for Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFCs) have the promise to improve energy efficiency and to provide society with a clean energy producing technology. The high temperature of operation (500-1000 C) enables the solid oxide fuel cell to operate with existing fossil fuels and to be efficiently coupled with turbines to give very high efficiency conversion of fuels to electricity. Solid oxide fuel cells are ...
متن کاملChemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملChemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملHighly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ
Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of metals, materials and minerals
سال: 2023
ISSN: ['0857-6149']
DOI: https://doi.org/10.55713/jmmm.v33i3.1654